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ABSTRACT

The deep learning-based visual tracking algorithms such as MDNet
achieve high performance leveraging to the feature extraction abil-
ity of a deep neural network. However, the tracking efficiency of
these trackers is not very high due to the slow feature extraction
for each frame in a video. In this paper, we propose an effective
tracking algorithm to alleviate the time-consuming problem. Specif-
ically, we design a deep flow collaborative network, which executes
the expensive feature network only on sparse keyframes and trans-
fers the feature maps to other frames via optical flow. Moreover, we
raise an effective adaptive keyframe scheduling mechanism to select
the most appropriate keyframe. We evaluate the proposed approach
on large-scale datasets: OTB2013 and OTB2015. The experiment
results show that our algorithm achieves considerable speedup and
high precision as well.

Index Terms— Deep learning, Visual tracking, Deep flow col-
laboration, Online learning, Keyframe scheduling

1. INTRODUCTION

Visual tracking task [1, 2] has attracted significant attention from
researchers due to a wide range of potential applications such as
VR, traffic control, robots, surveillance systems, etc. However, it is
a challenging task because of the environmental variation, appear-
ance variation of the target, and the high-efficiency requirements
for some applications. An excellent tracker should consider both
model robustness and effectiveness. For one thing, model robust-
ness means the tracker performs well even when in complex en-
vironments such as background clutter, illumination variation, etc.
Besides, the tracker can adapt to the appearance variation of the
tracking object. For another thing, model effectiveness indicates the
tracker achieves adequate speed for the applications.

With the development of the convolution neural network (CNN)
[3, 4, 5, 6], deep learning-based methods are explored broadly in the
visual tracking area. Benefitting from better feature representation
extracted [7, 8, 9, 10] by CNN, deep learning-based trackers such as
MDNet [11], HDT [12], and SINT [13] have obtained high accuracy
in the large-scale benchmark, which means that they have excellent
model robustness. However, most of these trackers haven’t taken
model effectiveness into full consideration. Specifically, they are
time-consuming due to the complex architectures and large numbers
of computations during feature extraction. Some previous works
such as Real-time MDNet [14] and FlowTrack [15] have explored
the model effectiveness. However, Real-time MDNet [14] realizes
the model effectiveness at the cost of decreasing the model robust-
ness. While FlowTrack [15] needs to spend time training the whole
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Fig. 1: Tracking results comparison of our approach DFCNet with
MDNet [11] in the challenging scenarios.

model, including flow sub-network and feature sub-network, before
the tracking process, which requires lots of computations.

In this work, we aim to propose an effective online algorithm
that can fully consider model effectiveness to alleviate the time-
consuming problem under the premise of maintaining model robust-
ness at the same time. To be specific, we design a deep flow col-
laborative network (DFCNet) which utilizes inter-flow information
in consecutive video sequences. As applying complex feature ex-
tractor to each frame is expensive, we speed up the tracking pro-
cess by running the feature network only on sparse keyframes while
other target states can be propagated through an optical flow map.
Besides, we propose an effective keyframe scheduling mechanism
to utilize appearance representation and temporal information. Fig.
1 shows DFCNet maintains robustness in complex scenes includ-
ing background clutter, illumination variation, in-plane rotation, and
out-of-plane rotation.

The contributions of this paper can be summarized as follows:

• We propose a deep flow collaborative tracking algorithm to
alleviate the low-efficiency problem. Besides, an effective
adaptive keyframe scheduling algorithm is developed, which
can help propagate the flow map efficiently and fully utilize
both flow information and appearance feature.

• In the experiments of OTB2013 [16] and OTB2015 [17],
the proposed algorithm is about 60% faster than the baseline
model MDNet [11] while maintains model robustness at the
same time. Our tracker performs favorably against most of
the existing popular trackers in terms of robustness.

2. PROPOSED METHOD

2.1. Network architecture

Our proposed model extends the tracker MDNet [11], champion of
VOT2015 [18], to the sub-network for feature extraction. Yet, the
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Fig. 2: The illustration of DFCNet Architecture, including the keyframe branch (motion model, feature extractor, and observation model) and
non-keyframe branch (flow sub-network).

average speed of the MDNet [11] is around 1.55 fps [2] due to the
generation of a large number of candidate samples and then the fea-
ture extraction through the deep neural network.

To speed up, DFCNet adopts a fast and effective method to avoid
redundant computations and get accurate results by introducing op-
tical flow. Only the sparse keyframes run the expensive feature net-
work, and other target states are obtained through optical flow cal-
culated with previous frames. As the difference between adjacent
frames is limited, temporal information can be gained by optical
flow. The specific network architecture is shown in Fig. 2. DFC-
Net first determines whether the current one is a keyframe. On the
one hand, if it is exactly a keyframe, then we first generate a large
number of candidate samples with the motion model, then extract
features through the complex feature network, and finally obtain the
estimated target with the observation model. On the other hand, if it
is not a keyframe, we get the optical flow between the current frame
and the previous frame through FlowNet2 [19] and then integrate the
estimated result of the previous frame with the corresponding optical
flow to determine the current target.

2.2. Adaptive keyframe scheduling mechanism

As for DFCNet, only keyframes pass through the feature extraction
network. If all frames are determined to be keyframes, DFCNet de-
grades to the MDNet [11]. If only the first frame is a keyframe and
the remaining are non-keyframes, due to the limited modeling of the
appearance features, the tracker gets a poor accuracy. So it shows
the significance of the keyframe selection strategy. Therefore, we
propose a novel adaptive keyframe scheduling algorithm to get both
speedup and high accuracy.

To begin with, DFCNet sets an interval K for scheduling mech-
anism to determine the fixed keyframes in a video sequence. For
example, say K = 3, frames such as 1st, 4th, 7th and so on are con-
sidered as keyframes. The remaining frames are judged whether to
be a keyframe or not in real-time based on the current tracking re-
sult. On the one hand, if the online tracking model scores higher
than a given score threshold T , it indicates that the current track-
ing result is relatively accurate. Then the estimated optical flow is
used to obtain the inter-frame information to complete the tracking
process of the next frame. On the other hand, if the online tracking

Algorithm 1: Deep flow collaborative algorithm for on-
line visual tracking.

Input: Initial target state B0, Number of frames in a video
C, Number of point samples M , Score threshold T

Output: Estimated target state {Bi}Ni=1

Initialize Score = +∞.
for i = 1 to C do

if i mod K == 1 or Score <= T then
/* Keyframe */

D = NFeature(Bi−1).
Calculate Bi according to Equation 1.
Score = f+(Bi).

else
/* Non-keyframe */

Fi−1→i = NFlow(Ii−1, Ii).
Sample M points {Pj}Mj=1 from Bi−1.
Propagate {Pj}Mj=1 to {P ′

j}Mj=1 via flow field.
Adjust {P ′

j}Mj=1 slightly to get Bi.
end

end

process has poor performance, the target of the next frame needs to
be obtained through the feature network, which requires a lot more
computations.

2.3. Online tracking algorithm

DFCNet is an online tracking algorithm. Online tracking refers to
fine-tuning the tracker online with the addition of the sequences. In
detail, DFCNet adopts the pre-trained tracking model in the begin-
ning, and then the model is updated in the subsequent frames. Online
tracking is suitable for the sequences as it can provide more accurate
predictions with the increase of the input data.

DFCNet can be divided into several modules, including motion
model, feature extractor, observation model, and model update. The
online tracking algorithm is presented in Algorithm 1. The detailed
tracking procedure is discussed in the following.



2.3.1. Motion model

Motion model adopts particle filter [20]. Based on the estimated tar-
get of the previous frame, the motion model generates Q candidate
bounding boxes following Gaussian distribution, which may contain
the target of the current frame.

In comparison, non-keyframes prevent running the motion
model and generating large numbers of candidates.

2.3.2. Feature extractor and observation model

The feature extractor converts the raw RGB image into a semantic
feature representation. It is the most critical part of a tracker as infor-
mative features can boost the tracking result significantly. Then the
observation model judges whether the candidate is the target based
on the features extracted.

In keyframes, DFCNet adopts a modified MDNet [11], to ex-
tract features by replacing the last multi-domain layer with a single-
domain layer. The modified network is composed of three convo-
lutional layers (Conv1-3) and three fully connected layers (FC4-6).
During the online tracking process, Conv1-3 and FC4-5 layers use
pre-trained parameters to initialize, and only three fully connected
layers are updated. After the feature sub-network, NFeature evalu-
ates Q candidate bounding boxes and obtains feature set D of those
candidates, DFCNet chooses the one with the highest positive score
to be the estimated target as equation 1 shows:

d∗ = argmax
d

f+(d), (1)

where d ∈ D, f+ is the positive score function, and d∗ is the optimal
candidate sample. While in the remaining non-keyframes, estimated
targets are obtained by fusing the target state of the previous frame
and optical flow, which is obtained from flow sub-network NFlow.
The overall procedure of DFCNet is presented in Algorithm 1. Fur-
ther details are described below.
Shifting pixels in target state DFCNet estimates the target state of
non-keyframes through optical flow obtained from FlowNet2 [19].
Specifically, DFCNet gets estimated flow from ith to i + 1th frame
Fi→i+1 and uniformly samples M pixels in the flow map to propa-
gate the target from ith to i+ 1th frame.
Bilinear interpolation in propagation As the coordinate of pix-
els propagated may be floating-point numbers, we apply the bilinear
interpolation to get the optical flow values in the flow map. In par-
ticular, the pixels in the target state of ith frame

{(xk
i , y

k
i )|k = 1, 2, 3, ...,M} (2)

can propagate to i+ 1th frame

{(xk
i +BIL(Fi→i+1(x

k
i , y

k
i ))[x],

yk
i +BIL(Fi→i+1(x

k
i , y

k
i ))[y])|k = 1, 2, 3, ...,M},

(3)

where BIL represents bilinear interpolation.
Outliers removal and magnitude adjustment Propagation may
bring in some outliers, which results in poor accuracy. DFCNet
keeps only KR percent of propagated pixels to concentrate on the
tracking object. As the appearance of objects in adjacent frames is
similar, Hyperparameters adaptive ratio (AR) is used to balance the
current and the previous target state to improve the robustness of the
results.

2.3.3. Model update

The model updating strategy refers to that of MDNet [11], which
mainly updates feature extractor. To fully consider model robustness
and effectiveness, DFCNet applies long-term updates and short-term
updates only on keyframes.

3. EXPERIMENTS

3.1. Settings

We evaluated DFCNet on OTB2013 [16] and OTB2015 [17]. The
feature sub-network is pre-trained on VOT2015 [18], which excludes
video sequences in OTB2015 [17]. The flow sub-network is pre-
trained for video recognition. In online tracking, adaptive keyframe
interval K and score threshold T is set to 3 and 10, numbers of can-
didate samples Q and pixels in bounding box M is set to 256 and
100, the ratio of reserved pixels KR and the adaptive ratio AR is
set to 0.9 and 0.4, respectively. The one-pass evaluation (OPE) is
applied to compare DFCNet with other trackers. For a fair compar-
ison, all the tracking results use the reported results. Our algorithm
is implemented in Pytorch and runs at a PC with 2.2GHz CPU and
GTX1080 GPU.
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Fig. 3: The above and below illustrations indicate the relationship
between keyframe ratio and score threshold, overlap success and
score threshold, respectively.

3.2. Ablation studies

In this experiment, ablation studies are employed to illustrate the
effectiveness of the adaptive keyframe scheduling algorithm. Fig.
3 illustrates how the keyframe ratio and overlap success correlate
with the score threshold on OTB2015. The above illustration rep-
resents when the score threshold gets higher, the ratio of keyframes
increases. It can be explained that the score threshold affects the
number of keyframes directly. The below illustration shows when
the score threshold gets higher, the overlap success ratio first in-
creases, and then converges to that of MDNet [11] in the end. It
can be appropriately interpreted that there exists an extreme value
for the score threshold in our framework. In other words, DFC-
Net achieves both model effectiveness and robustness with a proper
keyframe ratio. When the percentage of keyframes is low (lower
than the proper ratio), DFCNet does not have adequate appearance
information, which results in poor performance. However, when
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(a) OTB2013 results
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(b) OTB2015 results

Fig. 4: Precision and success plot on OTB. The numbers in the leg-
end indicate the representative precision at 20 pixels for precision
plots, and the area-under-curve scores for success plots.
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Fig. 5: The success plots with specific challenge attributes.

the percentage maintains around the proper ratio, DFCNet obtains
both sufficient inter-frame information and object appearance fea-
tures, which leads to high accuracy. At the same time, as the flow
computation is less expensive than feature extraction, the model is
substantially faster than the baseline model MDNet [11].

Table 1 records the tracking accuracy and speed of the DFC-

Net with the variation of the score threshold on OTB2015. DFC-
Net/w indicates a method without an adaptive keyframe mechanism.
DFCNet-number represents a standard DFCNet with an adaptive
keyframe mechanism, and the score threshold is set to number. It
shows the effectiveness of the adaptive keyframe mechanism.

KFR = KeyFrame Ratio, OS = Overlap Success, SU = SpeedUp
Metric KFR (%) OS (%) Speed (fps) SU (%)

DFCNet/w 33.3 59.0 4.06 120.9
DFCNet-2 36.8 61.2 3.77 104.1
DFCNet-6 44.5 62.3 3.53 91.8

DFCNet-10 52.4 65.7 2.95 60.3
DFCNet-18 69.7 64.5 2.50 36.1
DFCNet-26 85.0 65.7 2.21 20.2
DFCNet-34 96.3 65.2 1.90 3.4
DFCNet-42 99.3 65.3 1.86 1.0
DFCNet-50 99.9 65.1 1.84 0
DFCNet-58 100 65.0 1.84 0

MDNet - 65.0 1.84 -

Table 1: The table of overlap success and speed with the variation of
score threshold on OTB2015 (DFCNet vs. MDNet). The line with
bold is the setting we used in the examination on OTB.

3.3. Results on OTB

OTB2013 [16] has 50 annotated videos and OTB2015 [17] extends
to 100. In this experiment, we compare our method against track-
ers that published at top conferences and journals, including MDNet
[11], HDT [12], SINT+ [13], SiamFC [21], Struck [22], TLD [23],
CSK [24], LOT [25], VDT [26].

Fig. 4 illustrates the overlap success and precision plots. It
clearly shows that DFCNet sightly exceeds MDNet and outperforms
the popular trackers. For further performance analyses, we also rep-
resent the results on various challenge attributes in OTB2015, such
as background clutter, illumination variation, in-plane rotation, and
out-of-plane rotation. Fig. 5 shows that our tracker effectively han-
dles these challenges while others obtain relatively low scores.

4. CONCLUSION

In this work, we propose a flow collaborative network that only runs
the complex feature network on sparse keyframes and propagates the
features to other frames via flow map. Besides, an adaptive keyframe
scheduling mechanism is employed to maximize the benefits of both
appearance and temporal information. The approach is validated on
benchmarks OTB2013 [16] and OTB2015 [17]. It is around 60%
faster than MDNet [11] on OTB2015, which indicates the effective-
ness of our method. Moreover, DFCNet performs favorably against
existing popular trackers in accuracy and significantly advances the
practice of visual tracking tasks.
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