

Peidong Liu^{1*}, Gengwei Zhang^{2*}, Bochao Wang³, Hang Xu³, Xiaodan Liang², Yong Jiang¹, Zhenguo Li³

¹Tsinghua University, ²Sun Yat-Sen University, ³Huawei Noah's Ark Lab

Reporter: **Peidong Liu** Homepage: <u>http://perdonliu.github.io/</u>

1. INRODUCTION

2. METHOD

3. EXPERIMENTS

4. CONCLUSION

INTRODUCTIONMETHODEXPERIMENTSCONCLUSIONMotivation

• Handcrafted loss functions are sub-optimal, e.g. CE loss, Focal loss[1], L1, IoU loss[2], GIoU loss[3]

- Directly search loss formulas from well-designed primitive operations, different from searching hyperparameters in fixed loss formula[4, 5]
- Better alignment with evaluation metric (e.g. GFocal loss[6])
- Good mathematical property and optimization behavior

METHOD EXPERIMENTS CONCLUSION

Key Challenges

- Sparse action space (1 acceptable in 10⁵)
- heavy evaluation time (around 30min for one loss function)
- Guarantee good mathematical property and optimization behavior -

Convergence-Simulation Modules

METHOD

METHOD EXPERIMENTS CONCLUSION

Pipeline

EXPERIMENTS CONCLUSION

Search Space Design

Input Nodes

Classification: prediction x, label y, IoU wRegression: intersection i, union u, closure e

CE(x, y) = -dot(y, log(softmax(x)))CEI(x, y, w) = -dot(wy, log(softmax(x)))

Detector	Loss	AP (%)
Faster R-CNN R50	CE + GIoU	37.6
	CEI + GIoU	$37.7^{+0.1}$

Primitive Operators

- Unary functions: -x, e^x , $\log(x)$, |x|, \sqrt{x} , $\operatorname{softmax}(x)$, $\operatorname{softplus}(x)$, $\sigma(x)$, $\operatorname{gd}(x)$, $\operatorname{alf}(x)$, $\operatorname{erf}(x)$, $\operatorname{erfc}(x)$, $\operatorname{tanh}(x)$, $\operatorname{relu}(x)$, $\sin(x)$, $\cos(x)$
- Binary functions: $x_1 + x_2$, $x_1 x_2$, $x_1 \times x_2$, $\frac{x_1}{x_2 + \epsilon}$, dot (x_1, x_2)

METHOD

EXPERIMENTS CONCLUSION

Convergence-Simulation Modules

Convergence Property Verification guarantee *monotonicity* and *convergence*

Classification Branch

Regression Branch

• Distance-loss consistency

Model Optimization Simulation

guarantee training-friendliness and good performance

Simulate the optimization behavior of the loss candidates with #class images

Model optimization simulation

EXPERIMENTS

INTRODUCTIONMETHODEXPERIMENTSCONCLUSIONSearch on COCO

Faster R-CNN R50

CSE-Autoloss-A_{cls}(x, y, w) = -dot((1 + sin(w))y, log(softmax(x))),CSE-Autoloss-A_{reg} $(i, u, e) = (1 - \frac{i}{u}) + (1 - \frac{i+2}{e}),$

FCOS R50

CSE-Autoloss-B_{cls}(x, y, w) = $-[wy(1 + erf(\sigma(1 - y)))\log\sigma(x) + (gd(x) - wy)(\sigma(x) - wy)\log(1 - \sigma(x))],$ CSE-Autoloss-B_{reg}(i, u, e) = $\frac{3eu + 12e + 3i + 3u + 18}{-3eu + iu + u^2 - 15e + 5i + 5u}.$

INTRODUCTIONMETHODEXPERIMENTSCONCLUSIONSearch on COCO

• Across Architectures

• Across Datasets

			-				
Detector	Loss	AP (%)	$AP_{50}(\%)$	$AP_{75}(\%)$	$AP_{S}(\%)$	$AP_{M}(\%)$	$AP_L(\%)$
Faster R-CNN R50	CE + L1	37.4	58.1	40.4	21.2	41.0	48.1
	CE + GIoU	$37.6^{+0.2}$	$58.2^{+0.1}$	$41.0^{+0.6}$	$21.5^{+0.3}$	$41.1^{+0.1}$	$48.9^{+0.8}$
	CSE-Autoloss-A	$38.5^{+1.1}$	$58.6^{+0.5}$	$41.8^{+1.4}$	$ 22.0^{+0.8} $	$42.2^{+1.2}$	$50.2^{+2.1}$
	CE + L1	39.4	60.1	43.1	22.4	43.7	51.1
Faster R-CNN R101	CE + GIoU	$39.6^{+0.2}$	$59.2^{-0.9}$	$42.9^{-0.2}$	$22.6^{+0.2}$	$43.5^{-0.2}$	$51.5^{+0.4}$
	CSE-Autoloss-A	$40.2^{+0.8}$	$60.1^{+0.0}$	$43.7^{+0.6}$	$22.6^{+0.2}$	$44.3^{+0.6}$	$52.7^{+1.6}$
	CE + Smooth L1	40.3	58.6	44.0	22.5	43.8	52.9
Cascade R-CNN R50	CE + GIoU	$40.2^{-0.1}$	$58.0^{-0.6}$	$43.6^{-0.4}$	$22.4^{-0.1}$	$43.6^{-0.2}$	$52.6^{-0.3}$
	CSE-Autoloss-A	$40.5^{+0.2}$	$58.8^{+0.2}$	$44.1^{+0.1}$	$22.8^{+0.3}$	$43.9^{+0.1}$	$53.3^{+0.4}$
Mask R-CNN R50	CE + Smooth L1	38.2	58.8	41.4	21.9	40.9	49.5
	CE + GIoU	$38.5^{+0.3}$	$58.8^{+0.0}$	$41.8^{+0.4}$	$21.9^{+0.0}$	$42.1^{+1.2}$	$49.7^{+0.2}$
	CSE-Autoloss-A	$39.1^{+0.9}$	$59.3^{+0.5}$	$42.4^{+1.0}$	$22.4^{+0.5}$	$43.0^{+2.1}$	$51.4^{+1.9}$
FCOS R50	FL + GIoU	38.8	56.8	42.2	22.4	42.6	51.1
	CSE-Autoloss-B	$39.6^{+0.8}$	$57.5^{+0.7}$	$43.1^{+0.9}$	$22.7^{+0.3}$	$43.7^{+1.1}$	$52.6^{+1.5}$
ATSS R50	FL + GIoU	40.0	57.9	43.3	23.8	43.7	51.3
	CSE-Autoloss-B	$40.5^{+0.5}$	$58.3^{+0.4}$	$43.9^{+0.6}$	$23.3^{-0.5}$	$44.3^{+0.6}$	$52.5^{+1.2}$

Loss	VOC mAP (%)	BDD AP (%)
CE + L1	79.5	36.5
CE + GIoU	$79.6^{+0.1}$	$36.6^{+0.1}$
CSE-Autoloss-A	$80.4^{+0.9}$	$37.3^{+0.8}$

Ablation Studies

Individual Loss Contribution

Table 6: Comparison on different loss combinations for Faster R-CNN R50 on COCO val.

Loss	AP (%)
CE + L1	37.4
CE + IoU	$37.9^{+0.5}$
CE + Bounded IoU	$37.4^{+0.0}$
CE + GIoU	$37.6^{+0.2}$
CE + DIoU	$37.9^{+0.5}$
CE + CIoU	$37.8^{+0.4}$
$CE + CSE$ -Autoloss- A_{reg}	$37.9^{+0.5}$
CSE -Autoloss- A_{cls} + $GIoU$	$38.2^{+0.8}$
CSE-Autoloss-A	$38.5^{+1.1}$

Table 7: Comparison on different loss combinations for FCOS R50 on COCO val.

Loss	AP (%)
FL + GIoU	38.8
FL + DIoU	$38.7^{-0.1}$
FL + CIoU	$38.8^{+0.0}$
GHM (Li et al., 2019a)	$38.6^{-0.2}$
$FL + CSE-Autoloss-B_{reg}$	$39.1^{+0.3}$
$CSE\text{-}Autoloss\text{-}B_{cls} + GIoU$	$39.4^{+0.6}$
CSE-Autoloss-B	$39.6^{+0.8}$

Ablation Studies

Effectiveness of Convergence-Simulation Modules

Convergence property verification	Model optimization simulation	#Evaluated loss	
		$5 imes 10^3$	Filter out 99%
\checkmark		$7 imes 10^2$	loss candidates!
$\overline{}$	\checkmark	50	

Effectiveness of Proposed Search Algorithm

Search branch	Another branch	#Evaluated loss	Wall-clock hours	AP (%)
Classification	GIoU	1×10^4	$8 imes 10^3$	37.8
Classification	GIoU	$5 imes 10^3$	$5 imes 10^2$	38.2
Classification	GIoU	50	26	38.2
Regression	CE	15	8	37.9
	Search branch Classification Classification Classification Regression	Search branchAnother branchClassificationGIoUClassificationGIoUClassificationGIoURegressionCE	Search branchAnother branch#Evaluated lossClassificationGIoU 1×10^4 ClassificationGIoU 5×10^3 ClassificationGIoU50RegressionCE15	Search branchAnother branch#Evaluated lossWall-clock hoursClassificationGIoU 1×10^4 8×10^3 ClassificationGIoU 5×10^3 5×10^2 ClassificationGIoU5026RegressionCE158

CONCLUSION

Conclusion

- Propose a convergence-simulation driven evolutionary search pipeline for loss function search on object detection
- Speed up the search process by 20x by regularizing the mathematical property and optimization quality
- Validate the effectiveness of our proposed search pipeline and the search losses on various architectures and datasets

References

[1] Lin, Tsung-Yi, et al. "Focal loss for dense object detection." *Proceedings of the IEEE international conference on computer vision*. 2017.

[2] Yu, Jiahui, et al. "Unitbox: An advanced object detection network." *Proceedings of the 24th ACM international conference on Multimedia*. 2016.

[3] Rezatofighi, Hamid, et al. "Generalized intersection over union: A metric and a loss for bounding box regression." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2019.

[4] Li, Chuming, et al. "Am-Ifs: Automl for loss function search." *Proceedings of the IEEE International Conference on Computer Vision*. 2019.

[5] Wang, Xiaobo, et al. "Loss function search for face recognition." arXiv preprint arXiv:2007.06542 (2020).

[6] Li, Xiang, et al. "Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection." *arXiv preprint arXiv:2006.04388* (2020).

Thank you! Q/A?

Reporter: **Peidong Liu** Homepage: <u>http://perdonliu.github.io/</u>

Paper: <u>https://arxiv.org/abs/2102.04700</u> Code: <u>https://github.com/PerdonLiu/CSE-Autoloss</u> Please feel free to contact me at lpd19@mails.tsinghua.edu.cn